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Abstract

The asset pricing models of financial economics de-

scribe the prices and expected rates of return of

securities based on arbitrage or equilibrium theories.

These models are reviewed from an empirical per-

spective, emphasizing the relationships among the

various models.
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Asset pricing models describe the prices or

expected rates of return of financial assets, which

are claims traded in financial markets. Examples of

financial assets are common stocks, bonds, op-

tions, and futures contracts. The asset pricing

models of financial economics are based on two

central concepts. The first is the ‘‘no arbitrage

principle,’’ which states that market forces tend

to align the prices of financial assets so as to elim-

inate arbitrage opportunities. An arbitrage oppor-

tunity arises if assets can be combined in a

portfolio with zero cost, no chance of a loss, and

a positive probability of gain. Arbitrage opportun-

ities tend to be eliminated in financial markets

because prices adjust as investors attempt to trade

to exploit the arbitrage opportunity. For example,

if there is an arbitrage opportunity because the

price of security A is too low, then traders’ efforts

to purchase security A will tend to drive up its

price, which will tend to eliminate the arbitrage

opportunity. The arbitrage pricing model (APT),

(Ross, 1976) is a well-known asset pricing model

based on arbitrage principles.

The second central concept in asset pricing is

‘‘financial market equilibrium.’’ Investors’ desired

holdings of financial assets are derived from an

optimization problem. A necessary condition for

financial market equilibrium in a market with no

frictions is that the first-order conditions of the

investor’s optimization problem are satisfied. This

requires that investors are indifferent at the margin

to small changes in their asset holdings. Equilib-

rium asset pricing models follow from the first-

order conditions for the investors’ portfolio choice

problem, and a market-clearing condition. The

market-clearing condition states that the aggregate

of investors’ desired asset holdings must equal

the aggregate ‘‘market portfolio’’ of securities in

supply.

Differences among the various asset pricing

models arise from differences in their assumptions

about investors’ preferences, endowments, produc-

tion and information sets, the process governing the

arrivalofnews in the financialmarkets,andthe types

of frictions in the markets. Recently, models have

been developed that emphasize the role of human

imperfections in this process. For a review of this

‘‘behavioral finance’’ perspective, see Barberis

and Shleifer (2003).



Virtually all asset pricing models are special

cases of the fundamental equation:

Pt ¼ Et{mtþ1(Ptþ1 þDtþ1)}, (8 :1)

wherePt is the price of the asset at time t andDtþ1 is

the amount of any dividends, interest or other pay-

ments received at time tþ 1. The market wide ran-

dom variable mtþ1 is the ‘‘stochastic discount

factor’’ (SDF). By recursive substitution in Equa-

tion (8.1), the future price may be eliminated to

express the current price as a function of the future

cash flows and SDFs only: Pt ¼ Et{Sj>0 (Pk¼1, . . . ,

j mtþk)Dtþj}. Prices are obtained by ‘‘discounting’’

the payoffs, or multiplying by SDFs, so that the

expected ‘‘present value’’ of the payoff is equal to

the price.

We say that a SDF ‘‘prices’’ the assets if Equa-

tion (8.1) is satisfied. Any particular asset pricing

model may be viewed simply as a specification for

the stochastic discount factor. The random vari-

able mtþ1 is also known as the benchmark pricing

variable, equivalent martingale measure, Radon–

Nicodym derivative, or intertemporal marginal

rate of substitution, depending on the context.

The representation in Equation (8.1) goes at least

back to Beja (1971), while the term ‘‘stochastic

discount factor’’ is usually ascribed to Hansen

and Richard (1987).

Assuming nonzero prices, Equation (8.1) is

equivalent to:

Et (mtþ1 Rtþ1 � 1) ¼ 0, (8:2)

where Rtþ1 is the vector of primitive asset gross

returns and 1 is an N-vector of ones. The gross

return Ri,tþ1 is defined as (Pi,tþ1 þDi,tþ1)=Pi,t,

where Pi,t is the price of the asset i at time t and

Di,tþ1 is the payment received at time tþ 1. Em-

pirical tests of asset pricing models often work

directly with asset returns in Equation (8.2) and

the relevant definition of mtþ1.

Without more structure the Equations (8.1,8.2)

have no content, because it is always possible to

find a random variable mtþ1 for which the equa-

tions hold. There will be some mtþ1 that ‘‘works,’’

in this sense, as long as there are no redundant

asset returns. For example, take a sample of asset

gross returns with a nonsingular covariance matrix

and let mtþ1 be :[1
0(Et{Rtþ1Rtþ10}) � 1]Rtþ1 Substi-

tution in to Equation (8.2) shows that this SDF

will always ‘‘work’’ in any sample of returns. The

ability to construct an SDF as a function of the

returns that prices all of the included assets, is

essentially equivalent to the ability to construct a

minimum-variance efficient portfolio and use in as

the ‘‘factor’’ in a beta pricing model, as described

below.

With the restriction that mtþ1 is a strictly posi-

tive random variable, Equation (8.1) becomes

equivalent to the no arbitrage principle, which

says that all portfolios of assets with payoffs that

can never be negative but are positive with positive

probability, must have positive prices (Beja, 1971;

Rubinstein, 1976; Ross, 1977; Harrison and Kreps,

1979; Hansen and Richard, 1987.)

While the no arbitrage principle places restric-

tions on mtþ1, empirical work more typically ex-

plores the implications of equilibrium models for

the SDF based on investor optimization. A repre-

sentative consumer–investor’s optimization implies

the Bellman equation:

J(Wt,st) � maxEt{U(Ct,:)þ J(Wtþ1,stþ1)}, (8:3)

where U(Ct,:) is the utility of consumption expend-

itures at time t, and J(.) is the indirect utility of

wealth. The notation allows that the direct utility

of current consumption expenditures may depend

on other variables such as past consumption ex-

penditures or the current state variables. The state

variables, stþ1, are sufficient statistics, given

wealth, for the utility of future wealth in an opti-

mal consumption–investment plan. Thus, the state

variables represent future consumption–invest-

ment opportunity risk. The budget constraint is:

Wtþ1 ¼ (Wt� Ct)x
0Rtþ1, where x is the portfolio

weight vector, subject to x01 ¼ 1.

If the allocation of resources to consumption

and investment assets is optimal, it is not possible

to obtain higher utility by changing the allocation.

Suppose an investor considers reducing consump-

tion at time t to purchase more of (any) asset. The
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expected utility cost at time t of the foregone con-

sumption is the expected product of the marginal

utility of consumption expenditures, Uc(Ct,:) > 0

(where a subscript denotes partial derivative),

multiplied by the price of the asset, and which is

measured in the same units as the consumption

expenditures. The expected utility gain of selling

the investment asset and consuming the proceeds

at time tþ 1 is Et{( Pi,tþ1 þDi,tþ1) Jw (Wtþ1,stþ1)}.

If the allocation maximizes expected utility,

the following must hold: Pi,t Et{Uc (Ct,:)}

¼ Et{( Pi,tþ1þDi,tþ1) Jw(Wtþ1,stþ1)}which is equ-

valent to Equation (8.1), with

mtþ1 ¼ Jw(Wtþ1,stþ1)

Et{Uc (Ct,:)}
: (8:4)

The mtþ1 in Equation (8.4) is the ‘‘intertemporal

marginal rate of substitution’’ (IMRS) of the con-

sumer–investor.

Asset pricing models typically focus on the rela-

tion of security returns to aggregate quantities. It is

therefore necessary to aggregate the first-order

conditions of individuals to obtain equilibrium ex-

pressions in terms of aggregate quantities. Then,

Equation (8.4) may be considered to hold for a

representative investor who holds all the securities

and consumes the aggregate quantities. Theoretical

conditions that justify the use of aggregate quan-

tities are discussed by Gorman (1953), Wilson

(1968), Rubinstein (1974), and Constantinides

(1982), among others. When these conditions fail,

investors’ heterogeneity will affect the form of the

asset pricing relation. The effects of heterogeneity

are examined by Lintner (1965), Brennan and

Kraus (1978), Lee et al. (1990), Constantinides

and Duffie (1996), and Sarkissian (2003), among

others.

Typically, empirical work in asset pricing fo-

cuses on expressions for expected returns and ex-

cess rates of return. The expected excess returns are

modeled in relation to the risk factors that create

variation in mtþ1. Consider any asset return Ri,tþ1

and a reference asset return, R0,tþ1. Define the

excess return of asset i, relative to the reference

asset as ri,tþ1 ¼ Ri,tþ1 � R0,tþ1. If Equation (8.2)

holds for both assets it implies:

Et{mtþ1ri,tþ1} ¼ 0 for all i: (8:5)

Use the definition of covariance to expand

Equation (8.5) into the product of expectations

plus the covariance, obtaining:

Et{ri,tþ1} ¼ Covt(ri,tþ1;�mtþ1)

Et{mtþ1}
, for all i, (8:6)

where Covt(:;:) is the conditional covariance.

Equation (8.6) is a general expression for the

expected excess return from which most of the

expressions in the literature can be derived.

Equation (8.6) implies that the covariance of

return with mtþ1, is a general measure of ‘‘system-

atic risk.’’ This risk is systematic in the sense that

any fluctuations in the asset return that are uncor-

related with fluctuations in the SDF are not

‘‘priced,’’ meaning that these fluctuations do not

command a risk premium. For example, in the

conditional regression ritþ1 ¼ ait þ bit mtþ1 þ uitþ1,

then Covt(uitþ1, mtþ1) ¼ 0. Only the part of the

variance in a risky asset return that is correlated

with the SDF is priced as risk.

Equation (8.6) displays that a security will earn

a positive risk premium if its return is negatively

correlated with the SDF. When the SDF is an

aggregate IMRS, negative correlation means that

the asset is likely to return more than expected

when the marginal utility in the future period is

low, and less than expected when the marginal

utility and the value of the payoffs, is high. For a

given expected payoff, the more negative the cov-

ariance of the asset’s payoffs with the IMRS, the

less desirable the distribution of the random re-

turn, the lower the value of the asset and the larger

the expected compensation for holding the asset

given the lower price.

8.1. The Capital Asset Pricing Model

One of the first equilibrium asset pricing models

was the Capital Asset Pricing Model (CAPM),
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developed by Sharpe (1964), Lintner (1965), and

Mossin (1966). The CAPM remains one of the

foundations of financial economics, and a huge

number of theoretical papers refine the assump-

tions and provide derivations of the CAPM. The

CAPM states that expected asset returns are given

by a linear function of the assets’ ‘‘betas,’’ which

are their regression coefficients against the market

portfolio. Let Rmt denote the gross return for the

market portfolio of all assets in the economy.

Then, according to the CAPM,

E(Ritþ1) ¼ d0 þ d1 bi, (8:7)

where bi ¼ Cov(Ri,Rm)=Var(Rm):

In Equation (8.7), d0 ¼ E(R0tþ1), where the

return R0tþ1 is referred to as a ‘‘zero-beta asset’’

to Rmtþ1 because the condition Cov(R0tþ1,

Rmtþ1) ¼ 0.

To derive the CAPM, it is simplest to assume

that the investor’s objective function in Equa-

tion (8.3) is quadratic, so that J(Wtþ1, Stþ1) ¼
V{Et(Rptþ1), Vart(Rptþ1)}where Rptþ1 is the inves-

tor’s optimal portfolio. The function V(.,.) is

increasing in its first argument and decreasing in

the second if investors are risk averse. In this case,

the SDF of Equation (8.4) specializes as: mtþ1

¼ at þ btRptþ1. In equilibrium, the representative

agent must hold the market portfolio, so

Rptþ1 ¼ Rmtþ1. Equation (8.7) then follows from

Equation (8.6), with this substitution.

8.2. Consumption-based Asset Pricing Models

Consumption models may be derived from Equa-

tion (8.4) by exploiting the envelope condition,

Uc(:) ¼ Jw(:), which states that the marginal utility

of current consumption must be equal to the mar-

ginal utility of current wealth, if the consumer has

optimized the tradeoff between the amount con-

sumed and the amount invested.

Breeden (1979) derived a consumption-based

asset pricing model in continuous time, assuming

that the preferences are time-additive. The utility

function for the lifetime stream of consumption is

Stb
tU(Ct), where b is a time preference parameter

and U(.) is increasing and concave in current con-

sumption, Ct. Breeden’s model is a linearization

of Equation (8.1), which follows from the assump-

tion that asset values and consumption follow

diffusion processes (Bhattacharya, 1981; Gross-

man and Shiller, 1982). A discrete-time version

follows Lucas (1978), assuming a power utility

function:

U(C) ¼ [C1�a � 1]=(1� a), (8:8)

wherea > 0 is the concavity parameter of the period

utility function. This function displays constant

relative risk aversion equal toa. ‘‘Relative risk aver-

sion’’ in consumption is defined as: Cu00(C)=u0(C).

Absolute risk aversion is defined as: u00(C)=u0(C).

Ferson (1983) studied a consumption-based asset

pricing model with constant absolute risk aversion.

Using Equation (8.8) and the envelope condi-

tion, the IMRS in Equation (8.4) becomes:

mtþ1 ¼ b(Ctþ1=Ct)
�a: (8:9)

A large body of literature in the 1980s tested the

pricing Equation (8.1) with the SDF given by the

consumption model (Equation (8.9)). See, for ex-

ample, Hansen and Singleton (1982, 1983), Ferson

(1983), and Ferson and Merrick (1987).

More recent work generalizes the consumption-

based model to allow for ‘‘nonseparabilities’’ in the

Uc(Ct,:) function in Equation (8.4), as may be

implied by the durability of consumer goods,

habit persistence in the preferences for consump-

tion, nonseparability of preferences across states of

nature, and other refinements. Singleton (1990),

Ferson (1995), and Cochrane (2001) review this

literature; Sarkissian (2003) provides a recent em-

pirical example with references. The rest of this

section provides a brief historical overview of

empirical work on nonseparable-consumption

models.

Dunn and Singleton (1986) and Eichenbaum

et al. (1988) developed consumption models with

durable goods. Durability introduces nonsepar-

ability over time, since the actual consumption at

a given date depends on the consumer’s previous

expenditures. The consumer optimizes over the
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current expenditures Ct, accounting for the fact

that durable goods purchased today increase con-

sumption at future dates, and thereby lower future

marginal utilities. Thus, Uc(Ct,:) in Equation (8.4)

depends on expenditures prior to date t.

Another form of time nonseparability arises if

the utility function exhibits ‘‘habit persistence.’’

Habit persistence means that consumption at two

points in time are complements. For example, the

utility of current consumption may be evaluated

relative to what was consumed in the past, so the

previous standard of living influences the utility

derived from current consumption. Such models

are derived by Ryder and Heal (1973), Becker

and Murphy (1988), Sundaresan (1989), Constan-

tinides (1990), and Campbell and Cochrane (1999),

among others.

Ferson and Constantinides (1991) model both

durability and habit persistence in consumption

expenditures. They show that the two combine as

opposing effects. In an example based on the utility

function of Equation (8.8), and where the ‘‘mem-

ory’’ is truncated at a single-lag, the derived utility

of expenditures is:

U(Ct,:) ¼ (1� a)�1St bt (Ct þ bCt�1)
1�a, (8:10)

where the coefficient b is positive and measures the

rate of depreciation if the good is durable and there

is no habit persistence. Habit persistence implies

that the lagged expenditures enter with a negative

effect (b < 0). Empirical evidence on similar habit

models is provided by Heaton (1993) and Braun

et al. (1993), who find evidence for habit in inter-

national consumption and returns data.

Consumption expenditure data are highly sea-

sonal, and Ferson and Harvey (1992) argue that

the Commerce Department’s X-11 seasonal adjust-

ment program may induce spurious time series

behavior in the seasonally adjusted consumption

data that most empirical studies have used.

Using data that are not adjusted, they find strong

evidence for a seasonal habit model.

Abel (1990) studied a form of habit persistence

in which the consumer evaluates current consump-

tion relative to the aggregate consumption in the

previous period, and which the consumer takes as

exogenous. The idea is that people care about

‘‘keeping up with the Joneses.’’ Campbell and

Cochrane (1999) developed another model in

which the habit stock is taken as exogenous (or

‘‘external’’) by the consumer. The habit stock in

this case is modeled as a highly persistent weighted

average of past aggregate consumptions. This ap-

proach results in a simpler and more tractable

model, since the consumer’s optimization does

not have to take account of the effects of current

decisions on the future habit stock In addition, by

modeling the habit stock as an exogenous time

series process, Campbell and Cochranes’ model

provides more degrees of freedom to match asset

market data.

Epstein and Zin (1989, 1991) consider a class of

recursive preferences that can be written as:

Jt ¼ F (Ct, CEQt (Jtþ1)). CEQt(:) is a time t ‘‘cer-

tainty equivalent’’ for the future lifetime utility

Jtþ1. The function F (:, CEQt(:)) generalizes the

usual expected utility function and may be

nontime-separable. They derive a special case of

the recursive preference model in which the prefer-

ences are:

Jt ¼ (1� b)C
p
t þ b Et (J

1�a
tþ1 )

p=(1�a)
h i1=p

: (8:11)

They show that the IMRS for a representative

agent becomes (when p 6¼ 0, 1� a 6¼ 0):

mtþ1 ¼ [b(Ctþ1=Ct)
p�1](1�a)=p {Rm,tþ1}

((1�a�p)=p):

(8:12)

The coefficient of relative risk aversion for time-

less consumption gambles is a and the elasticity of

substitution for deterministic consumption is

(1� p)�1. If a ¼ 1� p, the model reduces to the

time-separable power utility model. If a ¼ 1, the

log utility model of Rubinstein (1976) is obtained.

Campbell (1993) shows that the Epstein–Zin model

can be transformed to an empirically tractable

model without consumption data. He used a line-

arization of the budget constraint that makes it
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possible to substitute for consumption in terms of

the factors that drive the optimal consumption

function. Expected asset returns are then deter-

mined by their covariances with the underlying

factors.

8.3. Multi-Beta Asset Pricing Models

Beta pricing models are a class of asset pricing

models that imply the expected returns of securities

are related to their sensitivity to changes in the

underlying factors that measure the state of the

economy. Sensitivity is measured by the securities’

‘‘beta’’ coefficients. For each of the relevant state

variables, there is a market-wide price of beta

measured in the form of an increment to the

expected return (a ‘‘risk premium’’) per unit of

beta.

The CAPM represented in Equation (8.7) is the

premier example of a single-beta pricing model.

Multiple-beta models were developed in continu-

ous time by Merton (1973), Breeden (1979), and

Cox et al. (1985). Long (1974), Sharpe (1977),

Cragg and Malkiel (1982) and Connor (1984).

Dybvig (1983), Grinblatt and Titman (1983), and

Shanken (1987) provide multi-beta interpretations

of equilibrium models in discrete time. Multiple-

beta models follow when mtþ1 can be written as a

function of several factors. Equation (8.3) suggests

that likely candidates for the factors are variables

that proxy for consumer wealth, consumption ex-

penditures, or the state variables – the sufficient

statistics for the marginal utility of future

wealth in an optimal consumption–investment

plan. A multi-beta model asserts that the expected

return is a linear function of several betas, i.e.

E(Ritþ1) ¼ d0 þ �j¼1,..., K bij dj, (8:13)

where the bij, j ¼ 1, . . . , K , are the multiple regres-

sion coefficients of the return of asset i on K econ-

omy-wide risk factors, fj, j ¼ 1, . . . , K . The

coefficient d0 is the expected return on an asset

that has b0j ¼ 0, for j ¼ 1, . . . , K, i.e. it is the

expected return on a zero-(multiple) beta asset. If

there is a risk-free asset, then d0 is the return for

this asset. The coefficient dk, corresponding to

the k’th factor has the following interpretation: it

is the expected return differential, or premium, for

a portfolio that has bik ¼ 1 and bij ¼ 0 for all

j 6¼ k, measured in excess of the zero-beta asset’s

expected return. In other words, it is the expected

return premium per unit of beta risk for the risk

factor, k.

A multi-beta model, under certain assumptions,

is equivalent to the SDF representation of Equa-

tion (8.2). This equivalence was first discussed, for

the case of the CAPM, by Dybvig and Ingersoll

(1982). The general multifactor case is derived by

Ferson (1995) and Ferson and Jagannathan (1996),

who show that the multi-beta expected return

model of Equation (8.13) is equivalent to Equation

(8.2), when the SDF is linear in the factors:

mtþ1 ¼ at þ Sjbjt fjtþ1.

The logic of the equivalence between multi-beta

pricing and the SDF representation of asset pricing

models is easily seen using a regression example.

Consider a regression of asset returns onto the

factors, fj of the multi-beta model. The regression

model is Ritþ1 ¼ ai þ Sjbijt fjt þ uitþ1. Substitute

the regression equation into the right hand side of

Equation (8.6) and assume that Covt(ui,tþ1, mtþ1)

¼ 0. The result is:

Et(Ritþ1) ¼ d0t þ �j¼1, . . . K bijt

[Cov t{ fjtþ1,�mtþ1}=Et(mtþ1)],
(8:14)

which is a version of the multi-beta Equation

(8.13). The market-wide risk premium for factor j

is djt ¼ [Cov t{ fjtþ1, �mtþ1}=Et(mtþ1)]. In the

special case where the factor fjtþ1 is a traded

asset return, Equation (8.14) implies that

djt ¼ Et( fj,tþ1)� d0t; the expected risk premium

equals the factor portfolio’s expected excess return.

Equation (8.14) is useful because it provides

intuition about the signs and magnitudes of

expected risk premiums for particular factors.

The intuition is essentially the same as in Equation

(8.6). If a risk factor fjtþ1 is negatively correlated

with mtþ1, the model implies that a positive risk
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premium is associated with that factor beta. A

factor that is negatively related to marginal utility

should carry a positive premium, because the big

payoffs disappointingly come when the value of

payoffs is low. This implies a low present value,

and thus a high expected return. With a positive

covariance the opposite occurs. If the factor is high

when payoffs are highly valued, assets with a posi-

tive beta on the factor have a payoff distribution

that is ‘‘better’’ than risk free. Thus, the expected

return premium is negative, and such assets can

have expected returns below that of a risk-free

asset.

8.4. Relation to Mean–Variance Efficiency

The concept of a ‘‘minimum-variance portfolio’’ is

central in the asset pricing literature. A portfolio

Rptþ1 is minimum variance if and only if no port-

folio with the same expected return has a smaller

variance. Roll (1977) and others have shown that a

portfolio is minimum variance if and only if a

single-beta pricing model holds, using the portfolio

as the risk factor.1 According to the CAPM, the

market portfolio with return Rmtþ1 is minimum

variance. If investors are risk averse, the CAPM

also implies that Rmtþ1 is on the positively sloped

portion of the minimum-variance frontier, or

‘‘mean–variance efficient.’’ This implies that the

coefficient d1 in Equation (8.7) is positive, which

says that there is a positive tradeoff between mar-

ket risk and expected return when investors are

risk averse.

Multiple-beta asset pricing models imply that

combinations of particular portfolios are min-

imum-variance efficient. Equation (8.13) is equiva-

lent to the statement that a combination of K

factor-portfolios is minimum-variance efficient,

when the factors are traded assets. This result is

proved by Grinblatt and Titman (1987), Shanken

(1987), and Huberman et al. (1987). The corres-

pondence between multi-beta pricing and mean

variance efficiency is exploited by Jobson and

Korkie (1982), Gibbons et al. (1989), Kandel and

Stambaugh (1989), and Ferson and Siegel (2005),

among others, to develop tests of multi-beta

models based on mean variance efficiency.

8.5. Factor Models

A beta pricing model has no empirical content

until the factors are specified, since there will al-

most always be a minimum-variance portfolio

which satisfies Equation (8.13), with K ¼ 1. There-

fore, the empirical content of the model is the

discipline imposed in selecting the factors. There

have been four main approaches to finding

empirical factors. The first approach is to specify

empirical proxies for factors specified by the theory.

For example, the CAPM says that the ‘‘market

portfolio’’ of all capital assets is the factor, and

early studies concentrated on finding good meas-

ures for the market portfolio. A second approach is

to use factor analytic or principal components

methods. This approach is motivated by the APT,

as described below. A third approach chooses the

risk factors as economic variables or portfolios,

based on intuition such as that provided by

Equations (8.3) and (8.4). With this approach,

likely candidates for the factors are proxies for

consumer wealth, consumer expenditures, and

variables that may be sufficient statistics for the

marginal utility of future wealth in an optimal

consumption–investment plan. For examples of

this approach, see Chen et al. (1986), Ferson and

Harvey (1991), Campbell (1993), and Cochrane

(1996). A fourth approach to factor selection

forms portfolios by ranking stocks on firm charac-

teristics that are correlated with the cross-section of

average returns. For example, Fama and French

(1993, 1996) use the ratio of book value to market

price, and the relativemarket value (size) of the firm

to form their ‘‘factors.’’

Lo and MacKinlay (1990), MacKinlay (1995),

and Ferson et al. (1999) provide critiques of the

approach of sorting stocks on empirically motiv-

ated characteristics in order to form asset pricing

factors. Lo and MacKinlay examine the approach

as a version of data mining. MacKinlay argues that

the factors generated in this fashion by Fama and
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French (1993, 1996) are statistically unlikely to

reflect market risk premiums. Ferson, Sarkissian,

and Simin show that a hypothetical characteristic,

bearing an anomalous relation to returns, but com-

pletely unrelated to risk, can be repackaged as a

spurious ‘‘risk factor’’ with this approach. Berk

(1995) emphasizes that the price of a stock is the

value of its future cash flows discounted by future

returns, so an anomalous pattern in the

cross-section of returns would produce a corre-

sponding pattern in ratios of cash flow to price.

Some of the most empirically powerful character-

istics for the cross-sectional prediction of stock re-

turns are ratios, with market price per share in the

denominator. However, patterns that are related to

the cross-section of asset risks are also likely to be

captured by sorting stocks on such ratios. Thus,

the approach of sorting stocks on patterns in

average returns to form factors is potentially

dangerous, because it is likely to ‘‘work’’ when it

‘‘should’’ work, and it is also likely to work when

it should not. At the time this chapter was written

the controversy over such empirically motivated

factors was unresolved.

8.6. Factor Models and the Arbitrage

Pricing Model

The Arbitrage Pricing Model based on the APT of

Ross (1976) is an example of a multiple-beta asset

pricingmodel, although in theAPTEquation (8.13)

is an approximation. The expected returns are ap-

proximately a linear function of the relevant betas

as the number of securities in the market grows

without bound. Connor (1984) provided sufficient

conditions for Equation (8.13) to hold exactly in an

economy with an infinite number of assets, in gen-

eral equilibrium. This version of the multiple-beta

model, the exact APT, has received wide attention

in the finance literature. See Connor andKorajczyk

(1988), Lehmann and Modest (1988), Chen, (1983)

and Burmeister, and McElroy (1988) for discus-

sions on estimating and testing the model when

the factor realizations are not observable, under

auxiliary assumptions.

This section describes the Arbitrage Pricing The-

ory (APT) of Ross (1976), and how it is related to

factor models and to the general SDF representa-

tion for asset pricing models, as in Equation (8.2).

For this purpose, we suppress the time subscripts

and related notation. Assume that the following

data-generating model describes equity returns in

excess of a risk-free asset:

ri ¼ E(ri)þ b0
i f þ ei, (8:15)

where E( f ) ¼ 0 ¼ E(eif ), all i, and ft ¼ Ft � E(Ft)

are the unexpected factor returns. We can normal-

ize the factors to have the identity as their covar-

iance matrix; the bi absorb the normalization. The

N �N covariance matrix of the asset returns can

then be expressed as:

Cov(R) � S ¼ BB0 þ V , (8:16)

where V is the covariance matrix of the residual

vector, e, B is the N � K matrix of the vectors, bi,

and S is assumed to be nonsingular for all N. An

‘‘exact’’ factor structure assumes that V is diag-

onal. An approximate factor model, as described

by Chamberlain (1983) and Chamberlain and

Rothschild (1983), assumes that the eigenvalues

of V are bounded as N ! 1, while the K non-

zero-eigenvalues of BB’ become infinite as N ! 1.

Thus, the covariance matrix S has K unbounded

and N–K bounded eigenvalues, as N becomes

large.

The factor model represented in Equation (8.16)

decomposes the variances of returns into ‘‘perva-

sive’’ and ‘‘nonsystematic’’ risks. If x is an

N-vector of portfolio weights, the portfolio vari-

ance is x0Sx, where lmax(S)x
0x 	 x0Sx 	 lmin(S)

x0x, lmin(S) being the smallest eigenvalue of S and

lmax(S) being the largest. Following Chamberlain

(1983), a portfolio is ‘‘well diversified’’ if x0x ! 0

as N grows without bound. For example, an

equally weighted portfolio is well diversified; in

this case x0x ¼ (1=N) ! 0. The bounded eigen-

values imply that V captures the component of

portfolio risk that is not pervasive or systematic,

in the sense that this part of the variance vanishes
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in a well-diversified portfolio. The exploding eigen-

values of BB’ imply that the common factor risks

are pervasive, in the sense that they remain in a

large, well-diversified portfolio.

The arbitrage pricing theory of Ross (1976) as-

serts that a0a < 1 as N grows without bound,

where a is the N vector of ‘‘alphas,’’ or expected

abnormal returns, measured as the differences be-

tween the left and right hand sides of Equation

(8.13), using the APT factors in the multi-beta

model. The alphas are the differences between the

assets’ expected returns and the returns predicted

by the multi-beta model, also called the ‘‘pricing

errors.’’ The Ross APT implies that the multi-beta

model’s pricing errors are ‘‘small’’ on average, in a

large market. If a0a < 1 as N grows, then the

cross-asset average of the squared pricing errors,

(a0a)=N must go to 0 as N grows.

The pricing errors in a beta pricing model are

related to those of a SDF representation. If we

define am ¼ E(mR� 1), where m is linear in the

APT factors, then it follows that am ¼ E(m)a; the

beta pricing and stochastic discount factor alphas

are proportional, where the risk-free rate deter-

mines the constant of proportionality. Provided

that the risk-free rate is bounded above 100 per-

cent, then E(m) is bounded, and a0a is bounded

above if and only if a0
mam is bounded above. Thus,

the Ross APT has the same implications for the

pricing errors in the SDF and beta pricing para-

digms.

The ‘‘exact’’ version of the APT derived by Con-

nor (1984) asserts that a0a ! 0 asN grows without

bound, and thus the pricing errors of all assets go

to zero as the market gets large. Chamberlain

(1983) shows that the exact APT is equivalent

to the statement that all minimum-variance port-

folios are well diversified, and are thus combin-

ations of the APT factors. In this case, we have

E(mR---1) ¼ 0 when m is linear in the APT

factors, and a combination of the factors is a

minimum-variance efficient portfolio in the large

market.

8.7. Summary

The asset pricing models of financial economics are

based on an assumption that rules out arbitrage

opportunities, or they rely on explicit equilibrium

conditions. Empirically, there are three central rep-

resentations. The first is theminimum-variance effi-

ciency of a portfolio. The second is the beta pricing

model stated in terms of risk factors, and the third is

theSDFrepresentation.These three representations

are closely related, and become equivalent under

ancilliary assumptions. Together they provide a

rich and flexible framework for empirical analysis.

NOTE

1. It is assumed that the portfolio Rptþ1 is not the

global minimum-variance portfolio; that is, the min-

imum variance over all levels of expected return.

This is because the betas of all assets on the global

minimum-variance portfolio are identical.
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